226 research outputs found

    Golden oldies and silver brains : Deficits, preservation, learning, and rehabilitation effects of music in ageing-related neurological disorders

    Get PDF
    During the last decades, there have been major advances in mapping the brain regions that underlie our ability to perceive, experience, and produce music and how musical training can shape the structure and function of the brain. This progress has fueled and renewed clinical interest towards uncovering the neural basis for the impaired or preserved processing of music in different neurological disorders and how music-based interventions can be used in their rehabilitation and care. This article reviews our contribution to and the state-of-the-art of this field. We will provide a short overview outlining the key brain networks that participate in the processing of music and singing in the healthy brain and then present recent findings on the following key music-related research topics in neurological disorders: (i) the neural architecture underlying deficient processing of music (amusia), (ii) the preservation of singing in aphasia and music-evoked emotions and memories in Alzheimer's disease, (iii) the mnemonic impact of songs as a verbal learning tool, and (iv) the cognitive, emotional, and neural efficacy of music-based interventions and activities in the rehabilitation and care of major ageing-related neurological illnesses (stroke, Alzheimer's disease, and Parkinson's disease). (C) 2018 Elsevier Ltd. All rights reserved.Peer reviewe

    Post-stroke enriched auditory environment induces structural connectome plasticity : secondary analysis from a randomized controlled trial

    Get PDF
    Post-stroke neuroplasticity and cognitive recovery can be enhanced by multimodal stimulation via environmental enrichment. In this vein, recent studies have shown that enriched sound environment (i.e., listening to music) during the subacute post-stroke stage improves cognitive outcomes compared to standard care. The beneficial effects of post-stroke music listening are further pronounced when listening to music containing singing, which enhances language recovery coupled with structural and functional connectivity changes within the language network. However, outside the language network, virtually nothing is known about the effects of enriched sound environment on the structural connectome of the recovering post-stroke brain. Here, we report secondary outcomes from a single-blind randomized controlled trial (NCT01749709) in patients with ischaemic or haemorrhagic stroke (N = 38) who were randomly assigned to listen to vocal music, instrumental music, or audiobooks during the first 3 post-stroke months. Utilizing the longitudinal diffusion-weighted MRI data of the trial, the present study aimed to determine whether the music listening interventions induce changes on structural white matter connectome compared to the control audiobook intervention. Both vocal and instrumental music groups increased quantitative anisotropy longitudinally in multiple left dorsal and ventral tracts as well as in the corpus callosum, and also in the right hemisphere compared to the audiobook group. Audiobook group did not show increased structural connectivity changes compared to both vocal and instrumental music groups. This study shows that listening to music, either vocal or instrumental promotes wide-spread structural connectivity changes in the post-stroke brain, providing a fertile ground for functional restoration.Peer reviewe

    Measurements of muon flux in the Pyh\"asalmi underground laboratory

    Full text link
    The cosmic-ray induced muon flux was measured at several depths in the Pyh\"asalmi mine (Finland) using a plastic scintillator telescope mounted on a trailer. The flux was determined at four different depths underground at 400 m (980 m.w.e), at 660 m (1900 m.w.e), at 990 m (2810 m.w.e) and at 1390 m (3960 m.w.e) with the trailer, and also at the ground surface. In addition, previously measured fluxes from depths of 90 m (210 m.w.e) and 210 m (420 m.w.e) are shown. A relation was obtained for the underground muon flux as a function of the depth. The measured flux follows well the general behaviour and is consistent with results determined in other underground laboratories.Comment: 8 pages, 2 figures. Submitted to Nuclear Instrum. Methods

    Revisiting the Neural Basis of Acquired Amusia : Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Get PDF
    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions and longitudinal structural changes associated with different recovery trajectories of acquired amusia.Peer reviewe

    EMMA - A New Underground Cosmic-Ray Experiment

    Full text link
    A new type of cosmic-ray experiment is under construction in the Pyh\"asalmi mine in the underground laboratory of the University of Oulu, Finland. It aims to study the composition of cosmic rays at and above the knee region. The experiment, called EMMA, will cover approximately 150 square-metres of detector area. The array is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The full-size detector is expected to run by the end of 2007.Comment: Extended and updated TAUP2005 Proceedings contribution. 8 pages, 5 figures (part in colour). Preprint not submitte

    The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    Get PDF
    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of 20\sim 20 kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/EL/E behaviour, and distinguishing effects arising from δCP\delta_{CP} and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least 3σ3\sigma for 50\% of the true values of δCP\delta_{CP} with a 20 kton detector. With a far detector of 70 kton, the combination allows a 3σ3\sigma sensitivity for 75\% of the true values of δCP\delta_{CP} after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within today's state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.Comment: 21 pages, 12 figure
    corecore